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Abstract. In this paper we obtain the equations of shear-free motion of particles in a 
gravitational field in a form suitable for easy derivation of the corresponding integrability 
conditions. The results generalize those of Pirani and Williams in a similar study of rigid 
motions. We apply our results to the dynamics of a perfect fluid. 

1. Introduction 

There is currently some renewed interest in shear-free motion in the context of general 
relativity. Following thermodynamic considerations Treciokas and Ellis (1 97 1) have 
obtained some interesting results on shear-free perfect fluids with certain specified 
equations of state. 

Pirani and Williams (1962) derived integrability conditions for rigid motions. They 
found that the rigidity condition in general relativity associated with i t  a space-like 
three-space which is just the quotient space of space-time over the world lines. We find 
that this result may be extended to the case of shear-free motion where the quotient space 
is obtained not from space-time but from another space conformally related to it. 

In $ 2  we consider the equations for shear-free motion and obtain a number of lemmas 
which follow from the shear-free requirement. Integrability conditions for shear-free 
motion are derived in @ 3 and we apply our results to perfect fluids in @ 4 obtaining ex- 
plicitly a set of ‘selected variables’. There is a brief discussion of the results in @ 5. 

2. The equations of shear-free motion 

The covariant derivative of the four-velocity vector U ,  associated with a congruence of 
time-like curves may be decomposed in the usual way as follows (Ehlers and Kundt 
1962) 

(2.1) U, 1 1  b E v b u a  = m a b  + g a b  + +Oha, - t l aub  

where 

O a b  = u[a 1 1  b]  + tl[aUb] 9 cab = u(a I( b)  + a(aub) - f ehab  7 

hab = g a b  + uaub 9 a a  = u a  I /  hub, e = and u p a  = -1. (2.2) 

Here Latin indices range and sum over 1,2,3,4. The motion of a continuous medium 
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or a system of particles is said to  be shear-free if and only if for its world lines the velocity 
of shear gab vanishes : 

gab = 0. (2.3) 

gab = 0 = 8. (2.4) 

If in addition the velocity of expansion 8 vanishes, the motion is said to be rigid : 

Pirani and Williams (1962) showed that the equations (2.4) are equivalent to  the 
requirement that the projection tensor ha, be Lie transferred along the world lines : 

&ha, = 0, (2.5) 

fxa,' E X a b C l l d U d  + Ud luXdbC + Udil hXodC- U c  , l d X a ; .  

U 

where the Lie derivative of an arbitrary tensor XabC over a vector field U" is defined as 

(2.6) 

For other formulae on Lie derivatives see for example Yano (1955). In this paper all 
Lie differentiation will be over the velocity vector us and in what follows we simply 
write f for f,. 

U 

We may easily show that a motion is shear free if and only if 

fh , ,  = @ h a b .  (2.7) 

This may be written in the form 

&(e2"",) = 0, €4 = -'e 3 
where 4 is a scalar. We shall see that this form is particularly suited to  the derivation 
of the corresponding integrability conditions. 

Under the shear-free conditions it may be shown that 

and 

fmab = l h O b  ++ha, (2.10) 

where the tensor Xa; E Xabeiidud and l X a t  E h;hkhfX,,*. 

time s becomes the new coordinate x 4  so that 
It is always possible to adapt the coordinate system in such a way that the proper 

(2.1 1) 

where the symbol A indicates that the equation is valid in the adapted coordinate 
system but need not be so in general. For an arbitrary tensor X $ : : : : ,  

1 x Ed..  . . 
a b . . 4 .  

and 

(2.12) 
d fX$: A -x:f:: 

ax4 

In this coordinate system we therefore have the following theorem. 

Theorem. A necessary and sufficient condition for a space-time to admit a shear-free 
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motion is that there exists an adapted coordinate system with respect to  which the 
components ha, satisfy the equations 

(2.13) 

where Greek indices range over 1,2,3.  
We see from (2.13) that, provided $ satisfies the second equation, e2+ha, is a non- 

singular matrix which depends only on the three space coordinates xu and hence we 
may regard it as the metric of a three-dimensional riemannian space which is just the 
quotient space of the four-dimensional space with metric e2+gab over the world lines 
associated with U,. We may define the metric Hap of the three-space fi by 

H a ,  A e2@ha,, with H a P  & e-  W g a P  (2.14) 

so that HapHfly 8;. The corresponding riemannian connection is given by 

f:, A f ~ , + ( 6 ~ 4 1 , + 6 ~ $ , a - h a , h Y d 4 1 a )  (2.15) 

where f;, is the riemannian connection computed from the tensor ha, and 41a = a$/axa. 
We prove the following lemmas with the aid of the adapted coordinate system and 

the quotient space fi of the shear-free space-time. 

Lemma 1 .  Let X, be any vector field in a shear-free space-time V such that 

x,ua = 0 and EX, = 0. (2.16) 

Let tp denote the covariant derivative operator in fi. Then in the adapted coordinate 
system 

$,Xu LADXU (2.17) 

where A, is the covariant differentiation operator defined by 

ApXa A VpXa-(8i141p +Gjj141a-h,BhYd141d)X, (2.18) 

and L$la = h;+lc. 

ProoJ: In the adapted coordinate system the equations (2.16) become 

a 
aX4  

x4 0, -x, A 0 

+DXa A v ~ x a - ( 8 ~ ~ ~ p  + djj41a-haph7641JXy 

and hence Xu is a vector field in 9. From its definition and (2.15) 

where 
P,xa c a,x, - Tjj,x,. 

LV,X, Voxa - @(8;up + 8jju, - h,,h~~~~)x, . 

We may also show that 

The lemma follows from these equations since -L41a = #Jla-f6ua. 

Lemma 2. If any vector X, satisfies the conditions of lemma 1 then 

& l A b l X ,  = 0, (2.19) 
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(2.20) 

Proof. Since X, is a vector field in f‘ and $, is the covariant derivative operator in f‘, 
$,X, is a tensor field in f‘ and hence 

d --o x -r. 0. ax4 
It follows from lemma 1 and (2.12) that 

f l A B X ,  0 

so that 

f lAbXa A 0. 

Since this is a tensor equation valid in one coordinate system of V it is valid in every 
coordinate system and the lemma follows. 

Similar results may be obtained for a scalar field x for which ;Ex = 0. Furthermore 
one may show that when the conditions of lemma 1 are satisfied the following extensions 
of lemmas 1 and 2 are true: 

b,o,X, A LAy-LABX, (2.21) 

and 

f l A c l A b x a  = 0 etc. (2.22) 

More generally one may prove.the following lemma. 

Lemma 3. Let V be a shear-free space-time and let X”,-g.P be a tensor field in V which 
is orthogonal to  ua on each contravariant and covariant index. If in addition 

then 

(2.23) 

where differentiation with Ac is defined by an obvious extension of the definition in (2.20). 

3. Integrability conditions for shear-free motion 

We now set out to find compatibility conditions for a given riemannian space-time to 
admit a shear-free motion. In doing this we assume that the metric tensor gab, its affine 
connection {ib}, Riemann tensor Rabcd and all its derivatives are given. The condition 
for shear-free motion 

’(a 1 1  b )  + a(aub) - = (3.1) 
is then an equation involving U, and its first covariant or partial derivatives. We therefore 



On shear-free motion in general relativity 459 

search for a set of variables to be called 'selected variables', obtained from U, and its 
derivatives, whose first covariant or partial derivatives may be expressed algebraically 
in terms of the chosen variables. For this process we need to derive and make use of the 
integrability conditions for (3.1). 

Since there are only five independent equations in (3.1), it is not possible to solve 
algebraically for the twelve first covariant derivatives u,II b in terms of U, and the geometric 
quantities g o b ,  RdCd, R a k d l l e ,  etc. We may adjoin to the variable U,, the first covariant 
derivatives a&, a, and 8. We then set out to obtain integrability conditions for this 
augmented set of variables namely U,, m o b r  a,  and 8. Referring to these variables for the 
moment as our selected variables we now have ten selected variables. 

From equation (2.1) we see that the first covariant derivatives of U, are already 
expressed algebraically in terms of the selected variables. By differentiating covariantly 
the relation ab = ub/Icuc  and using the Ricci identity together with the shear-free con- 
dition we obtain 

By a similar procedure for W , b  we obtain 

The equation (3.2) contains on the right-hand side the terms h , b ,  6, drb while (3.3) has 
h o b  and -LOll,. These new terms are derivatives of our selected variables and hence must 
be eliminated from the right-hand side of the equations. To do this we use the integra- 
bility conditions for the equations (3.2) and (3.3). 

One may show that the integrability conditions for (3.2) are identically satisfied 
while those of (3.3) are not. To obtain these, instead of direct computation which is 
tedious, we proceed as follows. 

Let V be a shear-free space-time and let X, be an arbitrary covariant vector field 
lying in the rest space of the world lines in V.  In addition, let X, be Lie transferred along 
each world line. The equation (2.22) f l A c l A b X ,  = 0 follows. Our first integrability 
conditions are obtained by antisymmetrizing the indices b and c in this equation which 
on simplification reduces to 

X d f - L ~ ~ R d ~ b + U , I ~ / b U d ~ ~ E ~ - U d I ~ ~ U [ b ~ ~ c l  +V[b@la+(O:[c%le} = O' (3.4) 

Since xd is an arbitrary vector in the infinitesimal three-space orthogonal to U,, we 
conclude that 

lf-l{ - +Rd,k + U, 1 1  [bud I1 cl - Ud 1 1  au[b Ilcl+ v[b@la - %b@Ie) = 

This may be put in the convenient form 

(3.5) 

(3.6) 
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Written explicitly in terms of the expansion term 8 instead of 4 we have the condition 

Rabcd f 3Wabocd) 

= - +le lla[dhc]b - flel\ b[chd]a - +le lIaa[dhc]b - 3’ ba[chd]a 

- f - L 8 ~ ~ [ d h c ] b a a - f 1 d ~ ~ [ c h d ] a a b - % e B h a [ d h c ] b  

- @WakWk[dhc]b - feWbkWk[chd]u 

+ $8USUkRsak[dhclb + @USUkRsbk[chd]a. (3.7) 

This equation reduces on putting 8 = 0, to one of the integrability conditions for rigid 
motion obtained by Pirani and Williams. 

Application of lemma 3 to  (3.5) leads to the integrability conditions 

&lAP(e2@Kabcd) = 0, (3.8) 

&~A,lAp(e2@Kabcd)  = 0, .  . . , etc. 

and repeated applications may be used to obtain more integrability conditions 

(3.9) 

The integrability conditions (3.54, (3.8), (3.9) may be shown to be the requirement that 
the Riemann tensor for the three-dimensional space f should satisfy the equations 

and so on. 
Further integrability conditions obtained from (3.5) by contraction are 

&Kad = 0, Kad E gbCKabdc; (3.10) 

and 

&(e-’@K) = 0, K gadKad. (3.1 1) 

In terms of 8 these equations are 

&( IR,, + RasdkUSUk - 3WakWkd) 

= + l e i l a d  + + ~ 8 , ~ , , t l d ) + ~ e ~ , k ~ f ~ - ~ ~ R a s d k U s U k  
+ (ih”8 IIsk + $e,, k ak + $86 - & b , k d k  - @RskUsUk)hud, (3.12) 

and 
&(R 2R,kUsUk -I- 3W,kWsk) 

= $hsk811sk -t i 8 1 \ k U k  + $84 - + % W s k d k  - $OR - $8RSkUSUk. (3.13) 

They also reduce to the rigid case on putting d = 0. Lemma 3 may be applied to  (3.10) 
and (3.1 1) to give further integrability conditions : 

&LAbKad = 0, &-LAc-LdbKad = 0, etc, (3.14) 

and 

&-LA&e-’@K) = 0, &lAc~Ab(e-2@’K) = 0, etc. (3.15) 

These equations may be shown to require that the tensors k,,, k and their covariant 
derivatives with respect to 6 should be independent of the coordinate x4. 
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We may conclude that the equations (3.9, (3.10) and (3.11) together with those 
obtained from them by repeated application of lemma 3 are the compatibility conditions 
to be satisfied by U, and its covariant derivatives in order that a given space-time admit 
a shear-free motion with four-velocity U,. They generalize the results obtained by 
Pirani and Williams (1962) to the case when 8 # 0, showing explicitly the additional 
terms depending on 8. Attempts to obtain explicitly a set of selected variables in terms 
of which further derivatives may be algebraically expressed have proved unsuccessful 
due to the presence of terms involving 8 and its first and second derivatives in the 
integrability conditions (3.7), (3.12), (3.13). 

4. Shear-free fluids 

So far we have confined our attention to the kinematics of shear-free motion. We have 
not specified the nature of the continuous medium under consideration nor any field 
equations. We now apply the results of Q 3 to the dynamics of a perfect fluid. 

We therefore consider space-times which are required to satisfy Einstein's field 
equations : 

(4.1) 

where the energy-momentum tensor Tab is given in terms of the proper density p, the 
pressure p and the four-velocity U, by 

Tab = PUaub + p h a b *  (4.2) 

We assume that the fluid has an equation of state p = ,u(p). 
The conservation law Tabiib = 0, gives 

P + ( p + p ) B  = 0 (4.3) 
and 

aa+- lptia = 0. 
P+P  

In terms of the index F ,  defined by Lichnerowicz (1955) as 

they may be written in the form 

1 
&In F+-8 = 0 

P 
and 

a,+ I ( l n  F)tla = 0 

with 

(4.4) 

(4.5) 

(4.6) 
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On differentiating (4.4) we get 

P \ / a b  + PI1 b U a + b U ,  1 1  b+ (p + p ) \ \  baa + (p + P b a  ii b = O. (4.7) 

If we impose the conditions of shear-free motion, the terms U, / / b  and a, il b are given by 
(3 .1 )  and (3.2). Taking spatial projection on both indices and antisymmetrizing we 
obtain the integrability conditions for pI1,  which may be put in the form 

g(FOab) = 0. (4.8) 

Thus for perfect fluids undergoing shear-free motion the tensor FOab is constant along 
any given stream line. 

If in (4.7) we project one index spatially and contract the other with the four-velocity, 
we obtain using (2.9) the result 

€(pa,) = 161,,+6aa. (4.9) 

We may remark that the scalar 4 introduced in 3 for shear-free motion may be 
shown to be determined by the energy density by the relation 

4.1. Integrability conditions 

Application of lemma 3 of 5 2 to the integrability condition &(Fw,b) = 0, yields further 
integrability conditions 

f lAc(FOab)  5 0. (4.10) 

Others may similarly be obtained by repeated application of the lemma. These integra- 
bility conditions together with those obtained in § 3 enable us to  determine a set of 
selected variables in which to express the compatibility conditions for shear-free motion 
subject to the field equations (4.1) and (4.2). 

From (2.10) and (4.8), equation (3 .3 )  becomes 

+ 2a[aobl, - U[aWbldWdc - I R a b c d U d  - @u[oob]c. 

Similarly from (2.9) and (4.9), equations (3.2) imply 

(4.11) 

(4.12) 

We have succeeded, in equations (4.11) and (4.12) in expressing o>,b\,c and zbllc 
essentially in terms of a set of variables 

{sv}l = {U,? aa ,  O a b r  6, l e , \ , ? P }  

together with the geometric quantities gab, Rabcd, Rabcdller. .  . and so on, which must 
satisfy the field equations. We may remark that since p is a specified function of p ,  p 
and all its derivatives are determined once p is known. 
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From the field equations we see that 

R,ubud = -&(/A + 3p) and R = ~ ( 3 p  - p) 
so that the scalar K in (3.11) may be written as 

K = -2(Kp++f id+($f i - - )O'  +3fi(p+3p)-($fiP+t)obcobc 

- [$fi + 6fiz + $b(p +p)labab}* (4.14) 

It is then possible, using (3.11), to express br in terms of { S V } ~  : 
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(4.13) 

B = f lKe+f2e8+f3cr ' ie i , ,  +f4e3 +f&!&mbc+f~eacac (4.15) 

where the coefficientsf,, . , . , f6 are functions of p ,  p and derivatives of p. 

(4.10) is 
One of the integrability conditions for shear-free fluids that may be obtained from 

f{e-2+hb'kic(Fo,b)} = 0, (4.16) 

which on using the field equations reduces to 

f(e-'+F[(+fi- 3)m,bab-$18,,,]) = O 
and this enables us to write 

(4.17) 

where br is given by (4.15) and f(ln f i )  may be expressed in terms of 8, p ,  p and derivatives 
of p. The formula (4.17) therefore expresses 8 ,,, in terms of { sv} 

The integrability conditions 

fIA,(e-'+K) = 0 

in (3.15) may be computed explicitly with the aid of the field equations. They can then 
be expressed in the compact form 

A , b ~ ~ ~ ~ ~ + B , b ~ b + C , b c ~ b c  = 0 (4.18) 

where the tensors A ,  Band Care functions ofthe set {sv}, {U,, a,, mob, 8,8, p }  together 
with the geometric quantities of the metric. We may therefore in principle solve (4.18) 
for 1 8 1 1 a  in terms of the new set of variables {sv},. 

The tensor Babab contains a term in d f - L R & o d U b U d .  This may be expressed explicitly 
in terms of {sv}, using the field equations and the integrability condition € K k  = 0. 
Also Cokobc has a term ob'fl Rbcdud. To express this in terms of { sv} , we observe that 
the shear-free condition and the integrability condition ,f(Fo,,) = 0 imply 

f(e-4'F2WbcWb') = 0 

and hence 

fiA,(e-4~F20b,ob') = 0. 

These two equations together with the integrability condition &-LA,(Fobc) = 0 enable 
us to write mbcflRkadud in terms of {sv),. 

We see therefore that the variables {sv}, enable us to express the compatibility 
conditions for shear-free motion in the desired form. In other words it is now possible 
in principle to express further derivatives of {SV}~ algebraically in terms of {sv}, . 
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5. Discussion 

The projection tensor is Lie transferred along the world lines of particles under rigid 
motion. As a result the local rest spaces of particles may be associated with a three- 
dimensional space which is in fact the quotient space of space-time over the world lines. 
Our analysis shows that for shear-free motion, space-time is not in general the direct 
product of a world line and a three-space. However we find that there is an associated 
riemannian space conformal to  space-time which now has a quotient space ? and the 
metric of this three-space is found to  differ from the projection tensor by a scalar factor. 

The integrability conditions for shear-free motion obtained in this paper may be 
seen from this point of view as requiring that all geometric objects constructed using 
the metric of the quotient space 

In the search for selected variables, we are not able to carry out the procedure 
followed by Pirani and Williams when we restrict ourselves to the kinematics of the 
motion. This is due to the presence of terms in the variable 8 with derivatives up to  the 
second order. However on applying the results to the dynamics of a perfect fluid, the 
conservation law for the energy-momentum provides additional integrability conditions 
which make it possible to  carry out the program of obtaining explicitly a set of selected 
variables. 

should be three dimensional. 
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